Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.853
Filtrar
1.
Synth Syst Biotechnol ; 9(2): 359-368, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38559426

RESUMO

Acarbose is a potent glycosidase inhibitor widely used in the clinical treatment of type 2 diabetes mellitus (T2DM). Various acarbose analogs have been identified while exploring compounds with improved pharmacological properties. In this study, we found that AcbE from Actinoplanes sp. SE50/110 catalyzes the production of acarbose analogs that exhibit significantly improved inhibitory activity towards α-amylase than acarbose. Recombinant AcbE mainly catalyzed the formation of two new compounds, namely acarstatins A and B, using acarbose as substrate. Using high-resolution mass spectrometry, nuclear magnetic resonance, and glycosidase hydrolysis, we elucidated their chemical structures as O-α-d-maltosyl-(1 â†’ 4)-acarbose and O-α-d-maltotriosyl-(1 â†’ 4)-acarbose, respectively. Acarstatins A and B exhibited 1584- and 1478-fold greater inhibitory activity towards human salivary α-amylase than acarbose. Furthermore, both acarstatins A and B exhibited complete resistance to microbiome-derived acarbose kinase 1-mediated phosphorylation and partial resistance to acarbose-preferred glucosidase-mediated hydrolysis. Therefore, acarstatins A and B have great potential as candidate therapeutic agents for T2DM.

2.
Heliyon ; 10(6): e28396, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38560692

RESUMO

Copper-based metal-organic frameworks (BDC-Cu MOFs) were synthesized via a casting approach using 1,4-benzene dicarboxylic (BDC) as organic ligand and their properties characterized. The obtained materials were then utilized to immobilize the α-amylase enzyme. The chemical composition and functional components of the synthesized support (BDC-Cu MOFs) were investigated with Fourier transform infrared spectroscopy (FTIR), the surface morphology was determined with scanning electron microscopy (SEM), and the elemental composition was established with energy dispersive X-ray (EDX) analyses. X-ray diffraction (XRD) was employed to analyze the crystallinity of the synthesized DBC-Cu MOFs. The zeta potentials of DBC-Cu MOFs and DBC-Cu MOFs@α-amylase were determined. The immobilized α-amylase demonstrated improved catalytic activity and reusability compared to the free form. Covalent attachment of the α-amylase to BDC-Cu provided an immobilization yield (IY%) of 81% and an activity yield (AY%) of 89%. The immobilized α-amylase showed high catalytic activity and 81% retention even after ten cycles. Storage at 4 °C for eight weeks resulted in a 78% activity retention rate for DBC-Cu MOFs@α-amylase and 49% retention for the free α-amylase. The optimum activity occurred at 60 °C for the immobilized form, whereas the free form showed optimal activity at 50 °C. The free and immobilized α-amylase demonstrated peak catalytic activities at pH 6.0. The maximum reaction velocities (Vmax) values were 0.61 U/mg of protein for free α-amylase and 0.37 U/mg of protein for BDC-Cu MOFs@α-amylase, while the Michaelis‒Menten affinity constants (Km) value was lower for the immobilized form (5.46 mM) than for the free form (11.67 mM). Treatments of maize flour and finger millet samples with free and immobilized α-amylase resulted in increased total phenolic contents. The enhanced antioxidant activities of the treated samples were demonstrated with decreased IC50 values in ABTS and DPPH assays. Overall, immobilization of α-amylase on BDC-Cu MOFs provided improved stability and catalytic activity and enhanced the antioxidant potentials of maize flour and finger millet.

3.
Front Endocrinol (Lausanne) ; 15: 1348853, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562410

RESUMO

Introduction: Obesity, prevalent in approximately 80% of Qatar's adult population, increases the risk of complications like type 2 diabetes and cardiovascular diseases. Predictive biomarkers are crucial for preventive strategies. Salivary α-amylase activity (sAAa) inversely correlates with obesity and insulin resistance in adults and children. However, the connection between sAAa and cardiometabolic risk factors or chronic low-grade inflammation markers remains unclear. This study explores the association between serum sAAa and adiposity markers related to cardiovascular diseases, as well as markers indicative of chronic low-grade inflammation. Methods: Serum samples and clinical data of 1500 adult, non-diabetic, Overweight/Obese participants were obtained from Qatar Biobank (QBB). We quantified sAAa and C reactive protein (CRP) levels with an autoanalyzer. Cytokines, adipokines, and adiponectin of a subset of 228 samples were quantified using a bead-based multiplex assay. The associations between the sAAa and the adiposity indices and low-grade inflammatory protein CRP and multiple cytokines were assessed using Pearson's correlation and adjusted linear regression. Results: The mean age of the participants was 36 ± 10 years for both sexes of which 76.6% are women. Our analysis revealed a significant linear association between sAAa and adiposity-associated biomarkers, including body mass index ß -0.032 [95% CI -0.049 to -0.05], waist circumference ß -0.05 [95% CI -0.09 to -0.02], hip circumference ß -0.052 [95% CI -0.087 to -0.017], and HDL ß 0.002 [95% CI 0.001 to 0.004], albeit only in women. Additionally, sAAa demonstrated a significant positive association with adiponectin ß 0.007 [95% CI 0.001 to 0.01]while concurrently displaying significant negative associations with CRP ß -0.02 [95% CI -0.044 to -0.0001], TNF-α ß -0.105 [95% CI -0.207 to -0.004], IL-6 ß [95% CI -0.39 -0.75 to -0.04], and ghrelin ß -5.95 [95% CI -11.71 to -0.20], specifically within the female population. Conclusion: Our findings delineate significant associations between sAAa and markers indicative of cardiovascular disease risk and inflammation among overweight/obese adult Qatari females. Subsequent investigations are warranted to elucidate the nuances of these gender-specific associations comprehensively.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , alfa-Amilases Salivares , Masculino , Adulto , Criança , Humanos , Feminino , Pessoa de Meia-Idade , Sobrepeso , Adiponectina , Diabetes Mellitus Tipo 2/complicações , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/complicações , Obesidade/metabolismo , Biomarcadores , Inflamação/metabolismo , Citocinas
5.
Compr Psychoneuroendocrinol ; 18: 100232, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38596409

RESUMO

When perceived as threatening, social interactions have been shown to trigger the sympathoadrenal medullary system as well as the hypothalamic-pituitary-adrenal axis resulting in a physiologic stress response. The allostatic load placed on human health and physiology in the context of acute and chronic stress can have profound health consequences. The purpose of this study was to develop a protocol for a lab-based stress stimulus using social-evaluative threat. While several valid, stress-stimulating protocols exist, we sought to develop one that triggered a physiologic response, did not require significant lab resources, and could be completed in around 10 min. We included 53 participants (29 men and 24 women) and exposed them to a modified version of the Stroop Color-Word Interference Task during which the participants were made to feel they were performing the task poorly while the lead researcher feigned annoyance and frustration. After exposure to this Feigned Annoyance and Frustration (FAF) Test, both the men and women in this study demonstrated a statistically significant and clinically meaningful increase in subjective stress on the visual analog scale. Additionally, the men in this study demonstrated a statistically significant increase in heart rate and salivary α-amylase concentrations after exposure to the test. The women in this study did not demonstrate a statistically significant increase in the physiologic stress biomarkers. This protocol for the FAF Test shows promise to researchers with limited time and resources who are interested in experimentally activating the sympathoadrenal medullary system.

6.
Chem Biodivers ; : e202400708, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38590273

RESUMO

In this study, four undescribed bibenzyl derivatives (1-4), together with seven known compounds (5-11) were isolated from the aerial parts of Dendrobium officinale. Their chemical structures were determined to be (7'S,8'S) -9''-acetyldendrocandin U (1), (7'S,8'S) -4'-methoxydendrocandin T (2), (7'R,8'S) -dendrocandin B (3), (1S,2R) -5'''-methoxydendrofindlaphenol C (4) by analyzing of the spectroscopic data including HR-ESI-MS, 1D-, and 2D-NMR spectra. The absolute configurations of compounds 1-4 were determined by the electronic circular dichroism (ECD) spectra. Compounds 1-3, 5, 10 and 11 inhibited α-glucosidase with the IC50 values ranging from 56.3 to 165.3 µM, compounds 1-3, 5, 7-10 inhibited α-amylase with the IC50 values ranging from 65.2 to 177.6 µM.

7.
Int J Biol Macromol ; 266(Pt 2): 131310, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569986

RESUMO

Alpha amylase belonging to starch hydrolyzing enzymes has significant contributions to different industrial processes. The enzyme production through recombinant DNA technology faces certain challenges related to their expression, solubility and purification, which can be overcome through fusion tags. This study explored the influence of SUMO, a protein tag reported to enhance the solubility and stability of target proteins when fused to the N-terminal of the catalytic domain of amylase from Pyrococcus abyssi (PaAD). The insoluble expression of PaAD in E. coli was overcome when the enzyme was expressed in a fusion state (S-PaAD) and culture was cultivated at 18 °C. Moreover, the activity of S-PaAD increased by 1.5-fold as compared to that of PaAD. The ligand binding and enzyme activity assays against different substrates demonstrated that it was more active against 1 % glycogen and amylopectin. The analysis of the hydrolysates through HPLC demonstrated that the enzyme activity is mainly amylolytic, producing longer oligosaccharides as the major end product. The secondary structure analyses by temperature ramping in CD spectroscopy and MD simulation demonstrated the enzymes in the free, as well as fusion state, were stable at 90 °C. The soluble production, thermostability and broad substrate specificity make this enzyme a promising choice for various foods, feed, textiles, detergents, pharmaceuticals, and many industrial applications.

8.
Food Chem ; 449: 139232, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38581794

RESUMO

To effectively inhibit the retrogradation of staple foods, the effects of maltotetraose-forming amylase(G4-amylase) on the short and long-term retrogradation of different staple starches such as rice starch (RS), wheat starch (WS), potato starch (PS) were studied. The results indicated that G4-amylase decreased the content of amylose. Amylose contents (21.09%) of WSG4 were higher than that (14.82%) of RSG4 and (13.13%) of PSG4. WS had the most obvious change in the chain length distribution of amylopectin. A chains decreased by 18.99% and the B1 chains decreased by 12.08% after G4-amylase treatment. Compared to RS (662 cP) and WS (693 cP), the setback viscosity of RSG4 (338 cP) and WSG4 (385 cP) decreased. Compared to RS (0.41), WS (0.45), and PS (0.51), the long-term retrogradation rate of RSG4 (0.33), WSG4 (0.31), and PSG4 (0.38) significantly reduced. It indicated that G4-amylase significantly inhibited the long-term retrogradation of WS, followed by RS and PS.

9.
Molecules ; 29(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38611816

RESUMO

In this study, the α-glucosidase (maltase-glucoamylase: MGAM) and α-amylase inhibitory properties elicited by xylooligosaccharides (XOSs) prepared from dulse xylan were analysed as a potential mechanism to control postprandial hyperglycaemia for type-2 diabetes prevention and treatment. Xylan was purified from red alga dulse powder and used for enzymatic hydrolysis using Sucrase X to produce XOSs. Fractionation of XOSs produced xylobiose (X2), ß-(1→3)-xylosyl xylobiose (DX3), xylotriose (X3), ß-(1→3)-xylosyl-xylotriose (DX4), and a dulse XOS mixture with n ≥ 4 xylose units (DXM). The different fractions exhibited moderate MGAM (IC50 = 11.41-23.44 mg/mL) and α-amylase (IC50 = 18.07-53.04 mg/mL) inhibitory activity, which was lower than that of acarbose. Kinetics studies revealed that XOSs bound to the active site of carbohydrate digestive enzymes, limiting access to the substrate by competitive inhibition. A molecular docking analysis of XOSs with MGAM and α-amylase clearly showed moderate strength of interactions, both hydrogen bonds and non-bonded contacts, at the active site of the enzymes. Overall, XOSs from dulse could prevent postprandial hyperglycaemia as functional food by a usual and continuous consumption.


Assuntos
60578 , Glucuronatos , Hiperglicemia , Rodófitas , alfa-Amilases , Humanos , alfa-Glucosidases , Hipoglicemiantes/farmacologia , Xilanos/farmacologia , Simulação de Acoplamento Molecular , Oligossacarídeos/farmacologia
10.
Food Chem X ; 22: 101352, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38601950

RESUMO

α-Amylase, essential for carbohydrate digestion, relies on calcium (Ca) for its structural integrity and enzymatic activity. This study explored the inhibitory effect of salmon bone peptides on α-amylase activity through their interaction with the enzyme's Ca-binding sites. Among the various salmon bone hydrolysates, salmon bone trypsin hydrolysate (SBTH) exhibited the highest α-amylase inhibition. The peptide IEELEEELEAER (PIE), with a sequence of Ile-Glu-Glu-Leu-Glu-Glu-Glu-Glu-Leu-Glu-Ala-Glu-Arg from SBTH, was found to specifically target the Ca-binding sites in α-amylase, interacting with key residues such as Asp206, Trp203, His201, etc. Additionally, cellular experiments using 3 T3-L1 preadipocytes indicated PIE's capability to suppress adipocyte differentiation, and decreases in intracellular triglycerides, total cholesterol, and lipid accumulation. In vivo studies also showed a significant reduction in weight gain in the group treated with PIE(6.61%)compared with the control group (33.65%). These findings suggest PIE is an effective α-amylase inhibitor, showing promise for obesity treatment.

11.
Food Sci Nutr ; 12(4): 2772-2782, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38628175

RESUMO

Propolis, a natural product collected by honeybees from various plant sources, has gained significant attention due to its diverse bioactive compounds and potential therapeutic properties. To further explore its contents and biological activities, this study aimed to analyze the phenolic compounds in Siirt propolis extracts obtained using different solvents, namely ethanol, water, and ethanol-water mixtures. The primary objective of this research was to investigate the phenolic profile, as well as the antidiabetic and antioxidant activities of the propolis extracts. Chemical profiling of extracts was performed using LC-MS/MS. The antioxidant potential of the propolis extracts was evaluated through free radical scavenging methods, including DPPH and ABTS assays. As a result of these analyses, propolis extracts showed moderate radical scavenging potential with 13.86%-35.72% for DPPH and 33.62%-62.50% for ABTS at a concentration of 30 µg mL-1, respectively. This radical scavenging potential of the extracts sheds light on its ability to combat oxidative stress, which is implicated in the development of diabetes, and its potential effects on cellular health. Additionally, the study assessed the antidiabetic properties of the propolis extracts by examining their inhibition effects on α-amylase and α-glycosidase enzymes. Extracts with high phenolic content showed a high inhibitory effect against α-glucosidase with an IC50 of 5.72 ± 0.83 µg mL-1. This research provided significant findings regarding the potential use of propolis in the treatment of diabetes and related metabolic disorders.

12.
Int J Biol Macromol ; : 131680, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38641282

RESUMO

The subfamily GH13_16 trehalose synthase (TreS) converts maltose to trehalose and vice versa. Typically, it consists of three domains, but it may contain a C-terminal extension exhibiting clear sequence features of a maltokinase (MaK). The present in silico study was focused on collection of naturally fused TreS-MaKs and their subsequent detailed bioinformatics analysis. Hence a set of total 3354 unique sequences was compared consisting of 1900 single TreSs, 1426 fused TreS-MaKs and 28 single MaKs. Fused TreS-MaKs were divided into five groups, namely with a standard MaK, with mutations in the maltose-binding site, of the catalytic nucleophile, of the general acid/base and of both catalytic residues. Sequence logos bearing the best conserved sequence regions were prepared for both TreSs and MaKs in an effort to find unique sequence features. In addition, linkers connecting the TreS and MaK parts in the fused enzymes were analysed. This analysis revealed that MaKs in fused enzymes have an extended N-terminal regions compared to single MaKs. Finally, the evolutionary relationships were demonstrated by phylogenetic trees of TreS parts from single TreSs and fused TreS-MaKs from the same organism as well as of single TreSs existing in multiple isoforms in the same organism.

13.
Molecules ; 29(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38611788

RESUMO

Chenopodium quinoa Willd. is rich in phenolic compounds and exhibits diverse biological activities. Few studies have focused on the effect of colored quinoa's phenolic profile on potential biological activity. This study used a UPLC-MS/MS-based metabolomic approach to examine the quinoa phenolics and their association with in vitro antioxidant and hypoglycemic properties. In total, 430 polyphenols, mainly phenolic acids, flavonoids, and flavonols, were identified. Additionally, 121, 116, and 148 differential polyphenols were found between the white and black, white and red, and black and red comparison groups, respectively; 67 polyphenols were screened as shared key differential metabolites. Phenylalanine, tyrosine, and the biosynthesis of plant secondary metabolites were the main differently regulated pathways. Black quinoa had better total phenolic contents (643.68 mg/100 g DW) and antioxidant capacity, while white quinoa had better total flavonoid contents (90.95 mg/100 g DW) and in vitro α-amylase (IC50 value of 3.97 mg/mL) and α-glucosidase (IC50 value of 1.08 mg/mL) inhibition activities. Thirty-six polyphenols, including epicatechin and linarin, etc., were highly correlated with in vitro antioxidant activity, while six polyphenols, including tiliroside and chrysoeriol, etc., were highly correlated with in vitro hypoglycemic activity. This study may provide important information for colored quinoa resources to develop their healthy food applications.


Assuntos
Antioxidantes , Chenopodium quinoa , Antioxidantes/farmacologia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Fenóis , Polifenóis
14.
Nat Prod Res ; : 1-7, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619012

RESUMO

This paper reports the isolation of two undescribed phenolic glycosides (1 and 2), together with seven known compounds (3-9) from the branches of Viburnum chinshanense. The structures of undescribed compounds were elucidated by comprehensive spectroscopic methods (1D NMR, 2D NMR, and HRESIMS). The sugar units of compounds 1 and 2 were identified by acid hydrolysis and HPLC analysis of the chiral derivatives of the monosaccharides. Furthermore, the α­amylase and α-glucosidase inhibitory activities of all isolates were evaluated and compounds 1, 5, and 8 displayed potential α­amylase and α-glucosidase inhibitory activities. The molecular docking analyses of compounds 1 and 8 with the potent inhibition towards the target enzymes were also performed.

15.
Heliyon ; 10(8): e29433, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38644870

RESUMO

Nanoparticles have different shapes and sizes between the range of 1-100 nm, which show advantages for stabilizing compounds, higher carrier capacity, and lower costs. Metal nanoparticles such as copper, gold, silver, and zinc are favorable components for various applications due to their interesting properties. In the present study, nanoparticles were synthesized by reduction with flower extracts of Bauhinia variegate & Saussurea lappa that were used to stabilize the copper nanoparticles. Furthermore, the characterization of plants synthesized copper nanoparticles was carried out through UV-visible dynamic light scattering. Additionally, morphological characterization of nanoparticles was confirmed by scanning electron microscopy and energy dispersive X-ray spectroscopy confirmed the elemental composition of copper nanoparticles. Powder X-ray diffraction was conducted for the analysis of crystallinity, purity, and crystal size of plant-synthesized copper nanoparticles. The average particle size was evaluated and exhibited the particle size at the peak of 8.721 nm and 98.03 nm for flower extracts of Bauhinia variegate & Saussurea lappa copper nanoparticles. The Fourier Transform Infrared spectrum was taken to scrutinize the various functional groups that were responsible for the reduction of the copper ions. The antimicrobial results against the bacterial strains with the positive test results of the zone of inhibition were for Bauhinia variegate (17 mm, 18 mm, 19 mm, and 18 mm) and Saussurea lappa (17 mm, 19 mm, 18 mm, and 18 mm) respectively for plants synthesized copper nanoparticles against the Staphylococcus aureus, Escherichia coli, Klebsiella pneumonia and Pseudomonas aeruginosa. Lipase inhibition assay and Amylase inhibition assay with different concentrations (20 µg/mL to 100 µg/mL) for Bauhinia variegate & Saussurea lappa (12.34 %-59.67 % and 10.50 %-47.01 %) and (34.52 %-89.02 % and 22.34 %-56.45 %) confirmed the anti-obesity and anti-diabetic activities of plants extract synthesized copper nanoparticles.

16.
Food Res Int ; 184: 114273, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609250

RESUMO

Soy sauce is a traditional fermented food produced from soybean and wheat under the action of microorganisms. The soy sauce brewing process mainly involves two steps, namely koji fermentation and moromi fermentation. In the koji fermentation process, enzymes from starter molds, such as protease, aminopeptidase, carboxypeptidase, l-glutaminase, amylase, and cellulase, hydrolyze the protein and starch in the raw ingredients to produce short-chain substances. However, the enzymatic reactions may be diminished after being subjected to moromi fermentation due to its high NaCl concentration. These enzymatically hydrolyzed products are further metabolized by lactic acid bacteria and yeasts during the moromi fermentation process into organic acids and aromatic compounds, giving soy sauce a unique flavor. Thus, the starter molds, such as Aspergillus oryzae, Aspergillus sojae, and Aspergillus niger, and their secreted enzymes play crucial roles in soy sauce brewing. This review comprehensively covers the characteristics of the starter molds mainly used in soy sauce brewing, the enzymes produced by starter molds, and the roles of enzymes in the degradation of raw material. We also enumerate current problems in the production of soy sauce, aiming to offer some directions for the improvement of soy sauce taste.


Assuntos
Alimentos de Soja , Fermentação , Peptídeo Hidrolases , Aspergillus niger , Catálise
17.
Carbohydr Res ; 539: 109122, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38657354

RESUMO

The genomic screening of hyper-thermophilic Pyrococcus abyssi showed uncharacterized novel α-amylase sequences. Homology modelling analysis revealed that the α-amylase from P. abyssi consists of an N-terminal GH57 catalytic domain, α-amylase central, and C-terminal domain. Current studies emphasize in-silico structural and functional analysis, recombinant expression, characterization, structural studies through CD spectroscopy, and ligand binding studies of the novel α-amylase from P. abyssi. The soluble expression of PaAFG was observed in the E. coli Rosetta™ (DE3) pLysS strain upon incubation overnight at 18 °C in an orbital shaker. The optimum temperature and pH of the PaAFG were observed at 90 °C in 50 mM phosphate buffer pH 6. The Km value for PaAFG against wheat starch was determined as 0.20 ± 0.053 mg while the corresponding Vmax value was 25.00 ± 0.67 µmol min-1 mg-1 in the presence of 2 mM CaCl2 and 12.5 % glycerol. The temperature ramping experiments through CD spectroscopy reveal no significant change in the secondary structures and positive and negative ellipticities of the CD spectra showing the proper folding and optimal temperature of PaAFG protein. The RMSD and RMSF of the PaAFG enzyme determined through molecular dynamic simulation show the significant protein's stability and mobility. The soluble production, thermostability and broad substrate specificity make this enzyme a promising choice for various industrial applications.

18.
Bioorg Chem ; 147: 107363, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38657527

RESUMO

Environment-benign, multicomponent synthetic methodologies are vital in modern pharmaceutical research and facilitates multi-targeted drug development via synergistic approach. Herein, we reported green and efficient synthesis of pyrano[2,3-c]pyrazole fused spirooxindole linked 1,2,3-triazoles using a tea waste supported copper catalyst (TWCu). The synthetic approach involves a one-pot, five-component reaction using N-propargylated isatin, hydrazine hydrate, ethyl acetoacetate, malononitrile/ethyl cyanoacetate and aryl azides as model substrates. Mechanistically, the reaction was found to proceed via in situ pyrazolone formation followed by Knoevenagel condensation, azide alkyne cycloaddition and Michael's addition reactions. The molecules were developed using structure-based drug design. The primary goal is to identifying anti-oxidant molecules with potential ability to modulate α-amylase and DPP4 (dipeptidyl-peptidase 4) activity. The anti-oxidant analysis, as determined via DPPH, suggested that the synthesized compounds, A6 and A10 possessed excellent anti-oxidant potential compared to butylated hydroxytoluene (BHT). In contrast, compounds A3, A5, A8, A9, A13, A15, and A18 were found to possess comparable anti-oxidant potential. Among these, A3 and A13 possessed potential α-amylase inhibitory activity compared to the acarbose, and A3 further emerged as dual inhibitors of both DPP4 and α-amylase with anti-oxidant potential. The relationship of functionalities on their anti-oxidant and enzymatic inhibition was explored in context to their SAR that was further corroborated using in silico techniques and enzyme kinetics.

19.
Bioinform Biol Insights ; 18: 11779322241234767, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660393

RESUMO

Enzymatic reactions can be modulated by the incorporation of organic solvents, leading to alterations in enzyme stability, activity, and reaction rates. These solvents create a favorable microenvironment that enables hydrophobic reactions, facilities enzyme-substrate complex formation, and reduces undesirable water-dependent side reactions. However, it is crucial to understand the impact of organic solvents on enzymatic activity, as they can also induce enzyme inactivation. In this study, the enzymatic performance of Aspergillus oryzae α-amylase (Taka-amylase) in various organic solvents both experimentally and computationally was investigated. The results demonstrated that ethanol and ether sustain Taka-amylase activity up to 20% to 25% of the organic solvents, with ether providing twice the stability of ethanol. Molecular dynamics simulations further revealed that Taka-amylase has a more stable structure in ether and ethanol relative to other organic solvents. In addition, the analysis showed that the loop located near the active site in the AB-domain is a vulnerable site for enzyme destabilization when exposed to organic solvents. The ability of Taka-amylase to preserve the secondary loop structure in ether and ethanol contributed to the enzyme's activity. In addition, the solvent accessibility surface area of Taka-amylase is distributed throughout all enzyme structures, thereby contributing to the instability of Taka-amylase in the presence of most organic solvents.

20.
Sci Rep ; 14(1): 9027, 2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641640

RESUMO

Copper-doped ZnO nanoparticles with the formula Zn1-x(Cu)O, where x = 0.0, 0.03, 0.05, and 0.07 were produced using the co-precipitation process. Physical, chemical, and structural properties were properly examined. Powdered X-ray diffraction (P-XRD) patterns revealed the formation of hexagonal wurtzite crystal structure in all samples, through atomic substitutional incorporation in the Cu-doped ZnO lattice. The presence of Cu ions and their dissolution in the host ZnO crystal structure was supported by FT-IR spectra. HR-TEM images were used to assess the average size, morphology, and shape regularity of the synthesized samples. The form and homogeneity of the ZnO changed when Cu ions were substituted, as evidenced by FE-SEM/EDX analysis. The presence of copper signals in the Cu-doped samples indicates that the doping was successful. The decrease in zeta potential with an increased copper doping percentage designates that the nanoparticles (NPs) are more stable, which could be attributed to an increase in the ionic strength of the aqueous solution. The synthesized NPs were evaluated for their substantial in vitro antioxidant properties. In addition, the antimicrobial efficacy of the materials was tested against pathogenic microorganisms. Regarding the anti-diabetic activity, the 7Cu ZnO sample showed the highest inhibitory effect on the α-amylase enzyme. No variations were observed in the activities of the acetylcholinesterase enzyme (AChE) and proteinase enzymes with ZnO and samples doped with different concentrations of Cu. Therefore, further studies are recommended to reveal the in-vitro anti-diabetic activity of the studied doped samples. Finally, molecular docking provided valuable insights into the potential binding interactions of Cu-doped ZnO with α-amylase, FabH of E. coli, and Penicillin-binding proteins of S. aureus. These outcomes suggest that the prepared materials may have an inhibitory effect on enzymes and hold promise in the battle against microbial infections and diabetes.


Assuntos
Óxido de Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Simulação de Acoplamento Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Cobre/química , Escherichia coli , Staphylococcus aureus , Acetilcolinesterase , Íons/farmacologia , alfa-Amilases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...